llvm-PerfectShuffle

Modular compiler and toolchain technologies

Install

All systems
curl cmd.cat/llvm-PerfectShuffle.sh
Debian Debian
apt-get install llvm-3.8
Ubuntu
apt-get install llvm-8
Arch Arch Linux
pacman -S llvm6
image/svg+xml Kali Linux
apt-get install llvm-7
Windows (WSL2)
sudo apt-get update sudo apt-get install llvm-8
Raspbian
apt-get install llvm-3.8

llvm-6.0

Modular compiler and toolchain technologies

LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.

llvm-3.9

Modular compiler and toolchain technologies

LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.

llvm-4.0

Modular compiler and toolchain technologies

LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.

llvm

Low-Level Virtual Machine (LLVM)

The Low-Level Virtual Machine (LLVM) is a collection of libraries and tools that make it easy to build compilers, optimizers, Just-In-Time code generators, and many other compiler-related programs. This is a dependency package providing the default llvm package.

llvm-7

Modular compiler and toolchain technologies

LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.

llvm-3.8

Modular compiler and toolchain technologies

LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.

llvm-5.0

Modular compiler and toolchain technologies

llvm6

Collection of modular and reusable compiler and toolchain technologies

llvm-8

Modular compiler and toolchain technologies