llvm-lib
Low-Level Virtual Machine (LLVM)
Install
- All systems
-
curl cmd.cat/llvm-lib.sh
- Debian
-
apt-get install llvm-3.8
- Ubuntu
-
apt-get install llvm-8
- Arch Linux
-
pacman -S llvm6
- Kali Linux
-
apt-get install llvm-7
- Fedora
-
dnf install llvm6.0
- Windows (WSL2)
-
sudo apt-get update
sudo apt-get install llvm-8
- Raspbian
-
apt-get install llvm-3.8
- Dockerfile
- dockerfile.run/llvm-lib
llvm
Low-Level Virtual Machine (LLVM)
The Low-Level Virtual Machine (LLVM) is a collection of libraries and tools that make it easy to build compilers, optimizers, Just-In-Time code generators, and many other compiler-related programs. This is a dependency package providing the default llvm package.
llvm3.9
Low Level Virtual Machine compiler system (version 3.9)
llvm-6.0
Modular compiler and toolchain technologies
LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.
llvm-3.9
Modular compiler and toolchain technologies
LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.
llvm-4.0
Modular compiler and toolchain technologies
LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.
llvm5.0
The Low Level Virtual Machine
llvm-7
Modular compiler and toolchain technologies
LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.
llvm-3.8
Modular compiler and toolchain technologies
LLVM is a collection of libraries and tools that make it easy to build compilers, optimizers, just-in-time code generators, and many other compiler-related programs. LLVM uses a single, language-independent virtual instruction set both as an offline code representation (to communicate code between compiler phases and to run-time systems) and as the compiler internal representation (to analyze and transform programs). This persistent code representation allows a common set of sophisticated compiler techniques to be applied at compile-time, link-time, install-time, run-time, or "idle-time" (between program runs). The strengths of the LLVM infrastructure are its extremely simple design (which makes it easy to understand and use), source-language independence, powerful mid-level optimizer, automated compiler debugging support, extensibility, and its stability and reliability. LLVM is currently being used to host a wide variety of academic research projects and commercial projects. LLVM includes C and C++ front-ends, a front-end for a Forth-like language (Stacker), a young scheme front-end, and Java support is in development. LLVM can generate code for X86, SparcV9, PowerPC or many other architectures.